/["Trigger" example sketch for Lilypad MP3 Player
/I Mike Grusin, SparkFun Electronics
Il http://www.sparkfun.com

/I This sketch (which is preloaded onto the board by default),
/I will play a specific audio file when one of the five trigger
/I inputs (labeled T1 - T5) is momentarily grounded.

/I ' You can place up to five audio files on the micro-SD card.

Il These files should have the desired trigger number (1 to 5)

/I as the first character in the filename. The rest of the

/I filename can be anything you like. Long file names will work,

// but will be translated into short 8.3 names. We recommend using
// 8.3 format names without spaces, but the following characters

I are OK: .$%'-_@~"!(){}"#&. The VS1053 can play a variety of

/I audio formats, see the datasheet for information.

/I By default, a new trigger will interrupt a playing file, except
/Il itself. (In other words, a new trigger won't restart an

/I already-playing file). You can easily change this behavior by
/I modifying the global variables "interrupt" and "interruptself"
// below.

/I This sketch can output serial debugging information if desired

/I by changing the global variable "debugging" to true. Note that

/I this will take away trigger inputs 4 and 5, which are shared

/I with the TX and RX lines. You can keep these lines connected to

/I trigger switches and use the serial port as long as the triggers

/I are normally open (not grounded) and remain ungrounded while the
/Il serial port is in use.

/I Uses the SdFat library by William Greiman, which is supplied
// with this archive, or download from http://code.google.com/p/sdfatlib/

/I Uses the SFEMP3Shield library by Bill Porter, which is supplied
/I with this archive, or download from http://www.billporter.info/

/l License:

/I We use the "beerware" license for our firmware. You can do

/I ANYTHING you want with this code. If you like it, and we meet
/I someday, you can, but are under no obligation to, buy me a

/I (root) beer in return.

// Have fun!

Il -your friends at SparkFun

/I Revision history:
/1 1.0 initial release MDG 2012/11/01

/I We'll need a few libraries to access all this hardware!

#include <SPl.h> /I To talk to the SD card and MP3 chip
#include <SdFat.h> /I SD card file system
#include <SFEMP3Shield.h> // MP3 decoder chip

/I Constants for the trigger input pins, which we'll place
/l'in an array for convenience:

const int TRIG1 = AO;

const int TRIG2 = A4;

const int TRIG3 = A5;

const int TRIG4 = 1;

const int TRIG5 = 0;

int trigger[5] = {TRIG1,TRIG2,TRIG3,TRIG4,TRIG5};

/I And a few outputs we'll be using:

const int ROT_LEDR = 10; // Red LED in rotary encoder (optional)
const int EN_GPIO1 = A2; // Amp enable + MIDI/MP3 mode select
constint SD_CS =9; // Chip Select for SD card

/I Create library objects:

SFEMP3Shield MP3player;
SdFat sd;

/I Set debugging = true if you'd like status messages sent

/I to the serial port. Note that this will take over trigger

/I inputs 4 and 5. (You can leave triggers connected to 4 and 5
/I and still use the serial port, as long as you're careful to

/I NOT ground the triggers while you're using the serial port).

boolean debugging = false;
/I Set interrupt = false if you would like a triggered file to
/Il play all the way to the end. If this is set to true, new

/I triggers will stop the playing file and start a new one.

boolean interrupt = true;

/I Set interruptself = true if you want the above rule to also

/I apply to the same trigger. In other words, if interrupt = true
/I and interruptself = false, subsequent triggers on the same
/I file will NOT start the file over. However, a different trigger
/I WILL stop the original file and start a new one.

boolean interruptself = false;

I/ We'll store the five filenames as arrays of characters.
/I "Short" (8.3) filenames are used, followed by a null character.

char filename[5][13];

void setup()
{
int x, index;
SdFile file;
byte result;
char tempfilename[13];

I/l Set the five trigger pins as inputs, and turn on the
[/l internal pullup resistors:

for (x = 0; x <= 4; x++)
{
pinMode(trigger[x],INPUT);
digitalWrite(trigger[x],HIGH);
}

/I If serial port debugging is inconvenient, you can connect
/l a LED to the red channel of the rotary encoder to blink
/I startup error codes:

pinMode(ROT_LEDR,OUTPUT);
digitalWrite(ROT_LEDR,HIGH); // HIGH = off

/l The board uses a single I/O pin to select the
/ mode the MP3 chip will start up in (MP3 or MIDI),
/[and to enable/disable the amplifier chip:

pinMode(EN_GPIO1,0UTPUT);
digitalWrite(EN_GPIO1,LOW); // MP3 mode / amp off

/I If debugging is true, initialize the serial port:
Il (The 'F' stores constant strings in flash memory to save RAM)

if (debugging)

{
Serial.begin(9600);
Serial.printin(F("Lilypad MP3 Player trigger sketch"));

}

/I Initialize the SD card; SS = pin 9, half speed at first
if (debugging) Serial.print(F("initialize SD card... "));
result = sd.begin(SD_CS, SPI_HALF_SPEED); // 1 for success

if (result != 1) // Problem initializing the SD card

{
if (debugging) Serial.print(F("error, halting"));
errorBlink(1); // Halt forever, blink LED if present.
}

else
if (debugging) Serial.printin(F("success!"));

/[Start up the MP3 library

if (debugging) Serial.print(F("initialize MP3 chip... "));
result = MP3player.begin(); // 0 or 6 for success

/I Check the result, see the library readme for error codes.

if ((result != 0) && (result != 6)) // Problem starting up
{
if (debugging)
{
Serial.print(F("error code "));
Serial.print(result);
Serial.print(F(", halting."));
}
errorBlink(result); // Halt forever, blink red LED if present.
}
else
if (debugging) Serial.printin(F("success!"));

/I Now we'll access the SD card to look for any (audio) files
/I starting with the characters '1' to '5":

if (debugging) Serial.printin(F("reading root directory"));
/[Start at the first file in root and step through all of them:

sd.chdir("/",true);
while (file.openNext(sd.vwd(),0_READ))

{

/I get filename
file.getFilename(tempfilename);
/I Does the filename start with char '1' through '5'?

if (tempfilename[0] >='1' && tempfilename[0] <= '5')

{
Il Yes! subtract char '1' to get an index of 0 through 4.

index = tempfilename[0] - '1";
/I Copy the data to our filename array.
strcpy(filename[index],tempfilename);

if (debugging) // Print out file number and name

{
Serial.print(F("found a file with a leading "));
Serial.print(index+1);
Serial.print(F(": "));
Serial.printin(filename[index]);

}

}

else
if (debugging)
{

Serial.print(F("found a file w/o a leading number: "));
Serial.printin(tempfilename);

}

file.close();

}

if (debugging)
Serial.printin(F("done reading root directory"));

if (debugging) // List all the files we saved:

{
for(x = 0; x <= 4; x++)
{
Serial.print(F("trigger "));
Serial.print(x+1);
Serial.print(F(": "));
Serial.printin(filename[x]);
}
}

// Set the VS1053 volume. 0 is loudest, 255 is lowest (off):
MP3player.setVolume(10,10);
/l Turn on the amplifier chip:

digitalWrite(EN_GPIO1,HIGH);
delay(2);

void loop()
{
intt; I current trigger
static int last_t; // previous (playing) trigger
int x;
byte result;

I/l Step through the trigger inputs, looking for LOW signals.
/I The internal pullup resistors will keep them HIGH when
Il there is no connection to the input.

/I If serial debugging is on, only check triggers 1-3,
/I otherwise check triggers 1-5.

for(t = 1; t <= (debugging ? 3 : 5); t++)

{
/I The trigger pins are stored in the inputs][] array.
/I Read the pin and check if it is LOW (triggered).

if (digitalRead(trigger[t-1]) == LOW)
{
/I Wait for trigger to return high for a solid 50ms
Il (necessary to avoid switch bounce on T2 and T3
Il since we need those free for 12C control of the
/I amplifier)

x=0;
while(x < 50)
{
if (digitalRead(trigger[t-1]) == HIGH)
X++;
else
x=0;
delay(1);
}

if (debugging)

{
Serial.print(F("got trigger "));
Serial.printin(t);

}

/I Do we have a valid filename for this trigger?
Il (Invalid filenames will have 0 as the first character)

if (filename[t-1][0] == 0)
{
if (debugging)
Serial.printin(F("no file with that number"));

}

else // We do have a filename for this trigger!

{

/I If a file is already playing, and we've chosen to
/Il allow playback to be interrupted by a new trigger,
/I stop the playback before playing the new file.

if (interrupt && MP3player.isPlaying() && ((t != last_t) || interruptself))

{
if (debugging)
Serial.printin(F("stopping playback"));

MP3player.stopTrack();
}

/I Play the filename associated with the trigger number.
/I (If a file is already playing, this command will fail

/I with error #2).

result = MP3player.playMP3(filename[t-1]);

if (result == 0) last_t = t; // Save playing trigger

if(debugging)
{
if(result != 0)
{
Serial.print(F("error "));
Serial.print(result);
Serial.print(F(" when trying to play track "));
}
else
{
Serial.print(F("playing "));
}

Serial.printin(filenamel[t-1]);

void errorBlink(int blinks)

{
/I The following function will blink the red LED in the rotary
/I encoder (optional) a given number of times and repeat forever.
/I This is so you can see any startup error codes without having
I to use the serial monitor window.

int x;

while(true) // Loop forever

{

for (x=0; x < blinks; x++) // Blink the given number of times

{
digitalWrite(ROT_LEDR,LOW); // Turn LED ON
delay(250);
digitalWrite(ROT_LEDR,HIGH); // Turn LED OFF
delay(250);

}

delay(1500); // Longer pause between blink-groups

}
}

